Enabling exploratory data science with Spark and R

Slides PDF Video

R is a favorite language of many data scientists. In addition to a language and runtime, R is a rich ecosystem of libraries for a wide range of use cases from statistical inference to data visualization. However, handling large datasets with R is challenging, especially when data scientists use R with frameworks or tools written in other languages. In this mode most of the friction is at the interface of R and the other systems. For example, when data is sampled by a big data platform, results need to be transferred to and imported in R as native data structures. In this talk we show how SparkR solves these problems to enable a much smoother experience. In this talk we will present an overview of the SparkR architecture, including how data and control is transferred between R and JVM. This knowledge will help data scientists make better decisions when using SparkR. We will demo and explain some of the existing and supported use cases with real large datasets inside a notebook environment. The demonstration will emphasize how Spark clusters, R and interactive notebook environments, such as Jupyter or Databricks, facilitate exploratory analysis of large data.

Photo of Hossein Falaki

About Hossein

Hossein Falaki is a software engineer at Databricks working on the next big thing. Prior to that he was a data scientist at Apple’s personal assistant, Siri. He graduated with Ph.D. in Computer Science from UCLA, where he was a member of the Center for Embedded Networked Sensing (CENS).