Performance Optimization of Recommendation Training Pipeline at Netflix

Slides PDF Video

Netflix is the world’s largest streaming service, with over 80 million members worldwide. Machine learning algorithms are used to recommend relevant titles to users based on their tastes.
At Netflix, we use Apache Spark to power our recommendation pipeline. Stages in the pipeline, such as label generation, data retrieval, feature generation, training, validation, are based on Spark ML PipleStage framework. While this provides developers the flexibility to develop individual components as encapsulated pipeline stages, we find that coordination across stages can potentially provide significant performance gains.
In this talk, we discuss how our machine learning pipeline based on Spark has been improved over the years. Techniques such as predicate pushdown, wide transformation minimization, have lead to significant run time improvement and resource savings.

Session hashtag: #SFexp9

DB Tsai, Senior Research Engineer at Netflix

About DB

DB Tsai is an Apache Spark committer and a Senior Research Engineer working on Personalized Recommendation Algorithms at Netflix. He implemented several algorithms including Linear Regression and Binary/Multinomial Logistic Regression with Elastici-Net (L1/L2) regularization using LBFGS/OWL-QN optimizers in Apache Spark. Prior to joining Netflix, DB was a Lead Machine Learning Engineer at Alpine Data Labs, where he led a team to develop innovative large-scale distributed learning algorithms, and then contributed back to open source Apache Spark project. DB was a Ph.D. candidate in Applied Physics at Stanford University. He holds a Master’s degree in Electrical Engineering from Stanford University.

Hua Jiang, Senior Software Engineer at Netflix

About Hua

Hua Jiang received the Ph.D. degree in electrical engineering from the University of Minnesota, Twin Cities, in 2012. He was with the Design Group of Synopsys Inc. and the Data Infrastructure Group, LinkedIn Corporation. He is a Senior Software Engineer at the Personalization Group of Netflix Inc. His work includes building machine learning infrastructure and exploring for novel computational paradigms to accommodate fast-growing machine learning needs.