SESSION

Easy, Scalable, Fault-Tolerant Stream Processing with Structured Streaming in Apache Spark

Slides PDF Video

Last year, in Apache Spark 2.0, Databricks introduced Structured Streaming, a new stream processing engine built on Spark SQL, which revolutionized how developers could write stream processing application. Structured Streaming enables users to express their computations the same way they would express a batch query on static data. Developers can express queries using powerful high-level APIs including DataFrames, Dataset and SQL. Then, the Spark SQL engine is capable of converting these batch-like transformations into an incremental execution plan that can process streaming data, while automatically handling late, out-of-order data and ensuring end-to-end exactly-once fault-tolerance guarantees.

Since Spark 2.0, Databricks has been hard at work building first-class integration with Kafka. With this new connectivity, performing complex, low-latency analytics is now as easy as writing a standard SQL query. This functionality, in addition to the existing connectivity of Spark SQL, makes it easy to analyze data using one unified framework. Users can now seamlessly extract insights from data, independent of whether it is coming from messy / unstructured files, a structured / columnar historical data warehouse, or arriving in real-time from Kafka/Kinesis.

In this session, Das will walk through a concrete example where – in less than 10 lines – you read Kafka, parse JSON payload data into separate columns, transform it, enrich it by joining with static data and write it out as a table ready for batch and ad-hoc queries on up-to-the-last-minute data. He’ll use techniques including event-time based aggregations, arbitrary stateful operations, and automatic state management using event-time watermarks.

Session hashtag: #SFdev4

Michael Armbrust, Software Engineer at Databricks

About Michael

Michael Armbrust is the lead developer of the Spark SQL project at Databricks. He received his PhD from UC Berkeley in 2013, and was advised by Michael Franklin, David Patterson, and Armando Fox. His thesis focused on building systems that allow developers to rapidly build scalable interactive applications, and specifically defined the notion of scale independence. His interests broadly include distributed systems, large-scale structured storage and query optimization. He was the 2011 recipient of the Sevin Rosen Award for Innovation.

Tathagata Das, Software Engineer at Databricks

About Tathagata

Tathagata Das is an Apache Spark Committer and a member of the PMC. He’s the lead developer behind Spark Streaming, and is currently employed at Databricks. Before Databricks, you could find him at the AMPLab of UC Berkeley, researching about datacenter frameworks and networks with professors Scott Shenker and Ion Stoica.