Challenging Web-Scale Graph Analytics with Apache Spark

Slides PDF Video

Graph analytics has a wide range of applications, from information propagation and network flow optimization to fraud and anomaly detection. The rise of social networks and the Internet of Things has given us complex web-scale graphs with billions of vertices and edges. However, in order to extract the hidden gems within those graphs, you need tools to analyze the graphs easily and efficiently.

At Spark Summit 2016, Databricks introduced GraphFrames, which implemented graph queries and pattern matching on top of Spark SQL to simplify graph analytics. In this talk, you’ll learn about work that has made graph algorithms in GraphFrames faster and more scalable. For example, new implementations like connected components have received algorithm improvements based on recent research, as well as performance improvements from Spark DataFrames. Discover lessons learned from scaling the implementation from millions to billions of nodes; compare its performance with other popular graph libraries; and hear about real-world applications.

Session hashtag: #SFml1

Xiangrui Meng, Software Engineer at Databricks

About Xiangrui

Xiangrui Meng is an Apache Spark PMC member and a software engineer at Databricks. His main interests center around developing and implementing scalable algorithms for scientific applications. He has been actively involved in the development and maintenance of Spark MLlib since he joined Databricks. Before Databricks, he worked as an applied research engineer at LinkedIn, where he was the main developer of an offline machine learning framework in Hadoop MapReduce. His Ph.D. work at Stanford is on randomized algorithms for large-scale linear regression problems.