Using Apache Spark
Pat McDonough - Databricks
Apache Spark

spark.incubator.apache.org

github.com/apache/incubator-spark

user@spark.incubator.apache.org
The Spark Community

March 27th 2010 - November 30th 2013
Commits to master, excluding merge commits

+You!
INTRODUCTION TO APACHE SPARK
What is Spark?

Fast and Expressive Cluster Computing System
Compatible with Apache Hadoop

Efficient
- General execution graphs
- In-memory storage

Usable
- Rich APIs in Java, Scala, Python
- Interactive shell

Up to 10× faster on disk,
100× in memory

2-5× less code
Key Concepts

Write programs in terms of transformations on distributed datasets

Resilient Distributed Datasets

- Collections of objects spread across a cluster, stored in RAM or on Disk
- Built through parallel transformations
- Automatically rebuilt on failure

Operations

- Transformations (e.g. map, filter, groupBy)
- Actions (e.g. count, collect, save)
Working With RDDs

```python
# Apache Spark

linesWithSpark = textFile.filter(lambda line: "Spark" in line)

textFile = sc.textFile("SomeFile.txt")

linesWithSpark.count()  # 74
linesWithSpark.first()  # # Apache Spark
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
...
```

Full-text search of Wikipedia
- 60GB on 20 EC2 machine
- 0.5 sec vs. 20s for on-disk
Scaling Down

<table>
<thead>
<tr>
<th>% of working set in cache</th>
<th>Execution time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache disabled</td>
<td>69</td>
</tr>
<tr>
<td>25%</td>
<td>58</td>
</tr>
<tr>
<td>50%</td>
<td>41</td>
</tr>
<tr>
<td>75%</td>
<td>30</td>
</tr>
<tr>
<td>Fully cached</td>
<td>12</td>
</tr>
</tbody>
</table>
Fault Recovery

RDDs track *lineage* information that can be used to efficiently recompute lost data

```python
msgs = textFile.filter(lambda s: s.StartsWith("ERROR"))
    .map(lambda s: s.split("\t")[2])
```
Language Support

Python

```python
lines = sc.textFile(...) lines.filter(lambda s: "ERROR" in s).count()
```

Scala

```scala
val lines = sc.textFile(...) lines.filter(x => x.contains("ERROR")).count()
```

Java

```java
JavaRDD<String> lines = sc.textFile(...); lines.filter(new Function<String, Boolean>() {
    Boolean call(String s) {
        return s.contains("error");
    }
}).count();
```

Standalone Programs
- Python, Scala, & Java

Interactive Shells
- Python & Scala

Performance
- Java & Scala are faster due to static typing
- ...but Python is often fine
Interactive Shell

• The Fastest Way to Learn Spark
• Available in Python and Scala
• Runs as an application on an existing Spark Cluster…
• OR Can run locally
Administrative GUls

http://<Standalone Master>:8080 (by default)
JOB EXECUTION
Software Components

- Spark runs as a library in your program (1 instance per app)
- Runs tasks locally or on cluster
 - Mesos, YARN or standalone mode
- Accesses storage systems via Hadoop InputFormat API
 - Can use HBase, HDFS, S3, …
Task Scheduler

- General task graphs
- Automatically pipelines functions
- Data locality aware
- Partitioning aware to avoid shuffles
Advanced Features

• Controllable partitioning
 – Speed up joins against a dataset
• Controllable storage formats
 – Keep data serialized for efficiency, replicate to multiple nodes, cache on disk
• Shared variables: broadcasts, accumulators
• See online docs for details!
Local Execution

- Just pass `local` or `local[k]` as master URL
- Debug using local debuggers
 - For Java / Scala, just run your program in a debugger
 - For Python, use an attachable debugger (e.g. PyDev)
- Great for development & unit tests
Cluster Execution

• Easiest way to launch is EC2:

  ```
  ./spark-ec2 -k keypair -i id_rsa.pem -s slaves
  [launch|stop|start|destroy] clusterName
  ```

• Several options for private clusters:
 – Standalone mode (similar to Hadoop’s deploy scripts)
 – Mesos
 – Hadoop YARN

• Amazon EMR: tinyurl.com/spark-emr
WORKING WITH SPARK
Using the Shell

Launching:

spark-shell

pyspark (IPYTHON=1)

Modes:

MASTER=local ./spark-shell # local, 1 thread
MASTER=local[2] ./spark-shell # local, 2 threads
MASTER=spark://host:port ./spark-shell # cluster
SparkContext

• Main entry point to Spark functionality
• Available in shell as variable `sc`
• In standalone programs, you’d make your own (see later for details)
Creating RDDs

Turn a Python collection into an RDD
> sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
> sc.textFile("file.txt")
> sc.textFile("directory/*.txt")
> sc.textFile("hdfs://namenode:9000/path/file")

Use existing Hadoop InputFormat (Java/Scala only)
> sc.hadoopFile(keyClass, valClass, inputFmt, conf)
Basic Transformations

> nums = sc.parallelize([1, 2, 3])

Pass each element through a function
> squares = nums.map(lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate
> even = squares.filter(lambda x: x % 2 == 0) // {4}

Map each element to zero or more others
> nums.flatMap(lambda x: range(x))
 > # => {0, 0, 1, 0, 1, 2}

Range object (sequence of numbers 0, 1, ..., x-1)
Basic Actions

```python
nums = sc.parallelize([1, 2, 3])
# Retrieve RDD contents as a local collection
nums.collect()  # => [1, 2, 3]

# Return first K elements
nums.take(2)   # => [1, 2]

# Count number of elements
nums.count()   # => 3

# Merge elements with an associative function
nums.reduce(lambda x, y: x + y)  # => 6

# Write elements to a text file
nums.saveAsTextFile("hdfs://file.txt")
```
Working with Key-Value Pairs

Spark’s “distributed reduce” transformations operate on RDDs of key-value pairs

Python:
```
pair = (a, b)
pair[0]  # => a
pair[1]  # => b
```

Scala:
```
val pair = (a, b)
pair._1  // => a
pair._2  // => b
```

Java:
```
Tuple2 pair = new Tuple2(a, b);
pair._1  // => a
pair._2  // => b
```
Some Key-Value Operations

```python
> pets = sc.parallelize(["cat", 1), ("dog", 1), ("cat", 2)])
> pets.reduceByKey(lambda x, y: x + y)
    # => {"cat", 3), (dog, 1)}
> pets.groupByKey() # => {"cat", [1, 2]), (dog, [1])}
> pets.sortByKey() # => {"cat", 1), (cat, 2), (dog, 1)}
```

`reduceByKey` also automatically implements combiners on the map side.
Example: Word Count

```scala
> lines = sc.textFile("hamlet.txt")
> counts = lines.flatMap(lambda line: line.split(" "))
  .map(lambda word => (word, 1))
  .reduceByKey(lambda x, y: x + y)
```

```
<table>
<thead>
<tr>
<th>Word</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td>1</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
</tr>
<tr>
<td>or</td>
<td>1</td>
</tr>
<tr>
<td>not</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
</tr>
<tr>
<td>be</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Example:
```
"to be or"
"to"
"be"
"or"

"not to be"
"not"
"to"
"be"
```
Other Key-Value Operations

> visits = sc.parallelize([(“index.html”, “1.2.3.4”), (“about.html”, “3.4.5.6”), (“index.html”, “1.3.3.1”)])

> pageNames = sc.parallelize([(“index.html”, “Home”), (“about.html”, “About”)])

> visits.join(pageNames)
 # (“index.html”, (“1.2.3.4”, “Home”))
 # (“index.html”, (“1.3.3.1”, “Home”))
 # (“about.html”, (“3.4.5.6”, “About”))

> visits.cogroup(pageNames)
 # (“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”]))
 # (“about.html”, ([“3.4.5.6”], [“About”]))
Setting the Level of Parallelism

All the pair RDD operations take an optional second parameter for number of tasks.

```python
> words.reduceByKey(lambda x, y: x + y, 5)
> words.groupByKey(5)
> visits.join(pageViews, 5)
```
Using Local Variables

Any external variables you use in a closure will automatically be shipped to the cluster:

```python
> query = sys.stdin.readline()
> pages.filter(lambda x: query in x).count()
```

Some caveats:
• Each task gets a new copy (updates aren’t sent back)
• Variable must be Serializable / Pickle-able
• Don’t use fields of an outer object (ships all of it!)
Closure Mishap Example

This is a problem:

```scala
class MyCoolRddApp {
  val param = 3.14
  val log = new Log(...)
  ...

  def work(rdd: RDD[Int]) {
    rdd.map(x => x + param)
    .reduce(...)
  }
}
```

How to get around it:

```scala
class MyCoolRddApp {
  ...
  ...

  def work(rdd: RDD[Int]) {
    val param_ = param
    rdd.map(x => x + param_)
    .reduce(...)
  }
}
```

NotSerializableException: MyCoolRddApp (or Log)

References only local variable instead of this.param
More RDD Operators

- map
- filter
- groupBy
- sort
- union
- join
- leftOuterJoin
- rightOuterJoin
- reduce
- count
- fold
- reduceByKey
- groupByKey
- cogroup
- cross
- zip
- sample
- take
- first
- partitionBy
- mapWith
- pipe
- save
- ...
CREATING SPARK APPLICATIONS
Add Spark to Your Project

• Scala / Java: add a Maven dependency on

groupId: org.spark-project
artifactId: spark-core_2.9.3
version: 0.8.0

• Python: run program with our pyspark script
Create a SparkContext

Scala

```scala
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

val sc = new SparkContext("url", "name", "sparkHome", Seq("app.jar"))
```

Java

```java
import org.apache.spark.api.java.JavaSparkContext

JavaSparkContext sc = new JavaSparkContext(
  "masterUrl", "name", "sparkHome", new String[] {"app.jar"})
```

Python

```python
from pyspark import SparkContext

sc = SparkContext("masterUrl", "name", "sparkHome", ["library.py"])
```
import sys
from pyspark import SparkContext

if __name__ == "__main__":
 sc = SparkContext("local", "WordCount", sys.argv[0], None)
 lines = sc.textFile(sys.argv[1])

 counts = lines.flatMap(lambda s: s.split(" "))
 .map(lambda word: (word, 1))
 .reduceByKey(lambda x, y: x + y)

 counts.saveAsTextFile(sys.argv[2])
EXAMPLE APPLICATION: PAGERANK
Example: PageRank

- Good example of a more complex algorithm
 - Multiple stages of map & reduce
- Benefits from Spark’s in-memory caching
 - Multiple iterations over the same data
Basic Idea

Give pages ranks (scores) based on links to them

• Links from many pages → high rank
• Link from a high-rank page → high rank
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page \(p \) contribute \(\frac{\text{rank}_p}{|\text{neighbors}_p|} \) to its neighbors
3. Set each page’s rank to \(0.15 + 0.85 \times \text{contribs} \)
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page's rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$

Final state:
Scala Implementation

```scala
val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  }
  ranks = contribs.reduceByKey(_ + _)
    .mapValues(0.15 + 0.85 * _)
}

ranks.saveAsTextFile(...)```
PageRank Performance

<table>
<thead>
<tr>
<th>Number of machines</th>
<th>Iteration time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>171</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
</tr>
</tbody>
</table>

- Hadoop
- Spark
Other Iterative Algorithms

K-Means Clustering

Logistic Regression

Time per Iteration (s)
CONCLUSION
Conclusion

• Spark offers a rich API to make data analytics \textit{fast}: both fast to write and fast to run
• Achieves 100x speedups in real applications
• Growing community with 25+ companies contributing
Get Started

Up and Running in a Few Steps
• Download
• Unzip
• Shell

Project Resources
• Examples on the Project Site
• Examples in the Distribution
• Documentation

http://spark.incubator.apache.org